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URLs
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Query Strings
Provides named parameter(s) and value(s) that modify the behavior of the resulting
page.

Format generally follows:

?arg1=value1&arg2=value2&arg3=value3

Some quick examples,

http://maps.googleapis.com/maps/api/geocode/json?sensor=false&address=1600+Amphitheatre+Parkway

https://swapi.dev/api/people/?search=r2
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http://maps.googleapis.com/maps/api/geocode/json?sensor=false&address=1600+Amphitheatre+Parkway
https://swapi.dev/api/people/?search=r2


URL encoding
This is will often be handled automatically by your web browser or other tool, but it
is useful to know a bit about what is happening

Spaces will encoded as ‘+’ or ‘%20’

Certain characters are reserved and will be replaced with the percent-encoded
version within a URL

! # $ & ’ ( )

%21 %23 %24 %26 %27 %28 %29
* + , / : ; =

%2A %2B %2C %2F %3A %3B %3D
? @ [ ]

%3F %40 %5B %5D

Characters that cannot be converted to the correct charset are replaced with
HTML numeric character references (e.g. a Σ would be encoded as &#931; )
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Examples
URLencode("http://lmgtfy.com/?q=hello world")1

[1] "http://lmgtfy.com/?q=hello%20world"

URLdecode("http://lmgtfy.com/?q=hello%20world")1

[1] "http://lmgtfy.com/?q=hello world"

URLencode("!#$&'()*+,/:;=?@[]")1

[1] "!#$&'()*+,/:;=?@[]"

URLencode("!#$&'()*+,/:;=?@[]", reserved = TRUE)1

[1] "%21%23%24%26%27%28%29%2A%2B%2C%2F%3A%3B%3D%3F%40%5B%5D"

URLencode("!#$&'()*+,/:;=?@[]", reserved = TRUE) |> 1
  URLdecode()2

[1] "!#$&'()*+,/:;=?@[]"

URLencode("Σ")1

[1] "%CE%A3"

URLdecode("%CE%A3")1

[1] "Σ"
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RESTful APIs
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REST
REpresentational State Transfer
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GitHub API
GitHub provides a REST API that allows you to interact with most of the data
available on the website.

There is extensive documentation and a huge number of endpoints to use - almost
anything that can be done on the website can also be done via the API.

GitHub REST API
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https://docs.github.com/en/rest


Demo 1 - GitHub API
Basic access

Get a user

List organization repositories
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https://docs.github.com/en/rest/users/users?apiVersion=2022-11-28#get-a-user
https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#list-organization-repositories


Pagination
Many REST APIs limit the number of results returned in a single response to manage
server load and improve performance. When working with large datasets, you’ll
need to make multiple requests to retrieve all results.

Common pagination approaches:

Offset-based - specify starting position and number of items (?
offset=20&limit=10)

Page-based - specify page number and page size (?page=2&per_page=30)

Cursor-based - use a token/cursor pointing to next set of results

Link header - server provides URLs to next/previous pages in response headers

The point is that there is no single standard for pagination in (REST) APIs, so always refer to the specific API
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GitHub API Pagination
GitHub uses page-based and link header pagination:

Query parameters:

per_page - number of items per page (default: 30, max: 100)

page - page number to retrieve (default: 1)

Link header: GitHub includes a Link header in responses with URLs for:

next - next page of results

prev - previous page

first - first page

last - last page
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Background
httr2 is a package designed around the construction and handling of HTTP
requests and responses. It is a rewrite of the httr package and includes the
following features:

Pipeable API

Explicit request object, with support for

rate limiting

retries

OAuth

Secure secret storage

Explicit response object, with support for

error codes / reporting

common body encoding (e.g. json, etc.)
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Structure of an HTTP Request
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HTTP Methods / Verbs
GET - fetch a resource

POST - create a new resource

PUT - full update of a resource

PATCH - partial update of a resource

DELETE - delete a resource.

Less common verbs: HEAD, TRACE, OPTIONS.
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httr2 request objects
A new request object is constructed via request() which is then modified via req_*
() functions

Some useful functions:

request() - initialize a request object

req_method() - set HTTP method

req_url_query() - add query parameters to URL

req_url_*() - add or modify URL

req_body_*() - set body content (various formats and sources)

req_user_agent() - set user-agent

req_dry_run() - shows the exact request that will be made

16Sta 523 - Fall 2025



Structure of an HTTP Response
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Status Codes
1xx: Informational Messages

2xx: Successful

3xx: Redirection

4xx: Client Error

5xx: Server Error
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httr2 response objects
Once constructed a request is made via req_perform() which returns a response
object (the most recent response can also be retrieved via last_response()).
Content of the response are accessed via the resp_*() functions

Some useful functions:

resp_status() - extract HTTP status code

resp_status_desc() - return a text description of the status code

resp_content_type() - extract content type and encoding

resp_body_*() - extract body from a specific format (json, html, xml, etc.)

resp_headers() - extract response headers
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Demo 2 - httr2 + GitHub
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Authentication
Most APIs have rate limits and access restrictions:

Unauthenticated requestss - limited rate limits, restricted access

Authenticated requests - higher rate limits, access to private resources

GitHub API rate limits (per hour):

Unauthenticated: 60 requests

Authenticated: 5,000 requests (personal access token)

Authentication is done via HTTP headers, typically:

Authorization: Bearer <token>

Here Authorization is the request header and Bearer <token> is the value. With httr2 req_auth_bearer_token() can
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GitHub Personal Access Tokens (PATs)
A PAT is a secure alternative to using passwords for API authentication:

Generated on GitHub: Settings → Developer settings → Personal access tokens

Choose scopes (permissions) carefully - only grant what’s needed

Two types:

Fine-grained tokens - repository-specific access (recommended)

Classic tokens - broader access patterns

Best practices:

Never commit tokens to git repositories

Store in environment variables (e.g., .Renviron)

Use packages like gitcreds or credentials to manage tokens securely

Set expiration dates and rotate tokens regularly
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