
Web APIs
Lecture 16

Dr. Colin Rundel

1Sta 523 - Fall 2025

URLs

2Sta 523 - Fall 2025

Query Strings
Provides named parameter(s) and value(s) that modify the behavior of the resulting
page.

Format generally follows:

?arg1=value1&arg2=value2&arg3=value3

Some quick examples,

http://maps.googleapis.com/maps/api/geocode/json?sensor=false&address=1600+Amphitheatre+Parkway

https://swapi.dev/api/people/?search=r2

3Sta 523 - Fall 2025

http://maps.googleapis.com/maps/api/geocode/json?sensor=false&address=1600+Amphitheatre+Parkway
https://swapi.dev/api/people/?search=r2

URL encoding
This is will often be handled automatically by your web browser or other tool, but it
is useful to know a bit about what is happening

Spaces will encoded as ‘+’ or ‘%20’

Certain characters are reserved and will be replaced with the percent-encoded
version within a URL

! # $ & ’ ()

%21 %23 %24 %26 %27 %28 %29
* + , / : ; =

%2A %2B %2C %2F %3A %3B %3D
? @ []

%3F %40 %5B %5D

Characters that cannot be converted to the correct charset are replaced with
HTML numeric character references (e.g. a Σ would be encoded as Σ)

4Sta 523 - Fall 2025

Examples
URLencode("http://lmgtfy.com/?q=hello world")1

[1] "http://lmgtfy.com/?q=hello%20world"

URLdecode("http://lmgtfy.com/?q=hello%20world")1

[1] "http://lmgtfy.com/?q=hello world"

URLencode("!#$&'()*+,/:;=?@[]")1

[1] "!#$&'()*+,/:;=?@[]"

URLencode("!#$&'()*+,/:;=?@[]", reserved = TRUE)1

[1] "%21%23%24%26%27%28%29%2A%2B%2C%2F%3A%3B%3D%3F%40%5B%5D"

URLencode("!#$&'()*+,/:;=?@[]", reserved = TRUE) |> 1
 URLdecode()2

[1] "!#$&'()*+,/:;=?@[]"

URLencode("Σ")1

[1] "%CE%A3"

URLdecode("%CE%A3")1

[1] "Σ"
5Sta 523 - Fall 2025

http://127.0.0.1:3714/Lec16.html?print-pdf
http://127.0.0.1:3714/Lec16.html?print-pdf
http://127.0.0.1:3714/Lec16.html?print-pdf
http://127.0.0.1:3714/Lec16.html?print-pdf
http://127.0.0.1:3714/Lec16.html?print-pdf
http://127.0.0.1:3714/Lec16.html?print-pdf
http://127.0.0.1:3714/Lec16.html?print-pdf
http://127.0.0.1:3714/Lec16.html?print-pdf
http://127.0.0.1:3714/Lec16.html?print-pdf
http://127.0.0.1:3714/Lec16.html?print-pdf
http://127.0.0.1:3714/Lec16.html?print-pdf
http://127.0.0.1:3714/Lec16.html?print-pdf
http://127.0.0.1:3714/Lec16.html?print-pdf
http://127.0.0.1:3714/Lec16.html?print-pdf
http://127.0.0.1:3714/Lec16.html?print-pdf
http://127.0.0.1:3714/Lec16.html?print-pdf
http://127.0.0.1:3714/Lec16.html?print-pdf
http://127.0.0.1:3714/Lec16.html?print-pdf
http://127.0.0.1:3714/Lec16.html?print-pdf
http://127.0.0.1:3714/Lec16.html?print-pdf
http://127.0.0.1:3714/Lec16.html?print-pdf
http://127.0.0.1:3714/Lec16.html?print-pdf
http://127.0.0.1:3714/Lec16.html?print-pdf
http://127.0.0.1:3714/Lec16.html?print-pdf

RESTful APIs

6Sta 523 - Fall 2025

REST
REpresentational State Transfer

7Sta 523 - Fall 2025

GitHub API
GitHub provides a REST API that allows you to interact with most of the data
available on the website.

There is extensive documentation and a huge number of endpoints to use - almost
anything that can be done on the website can also be done via the API.

GitHub REST API

8Sta 523 - Fall 2025

https://docs.github.com/en/rest

Demo 1 - GitHub API
Basic access

Get a user

List organization repositories

9Sta 523 - Fall 2025

https://docs.github.com/en/rest/users/users?apiVersion=2022-11-28#get-a-user
https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#list-organization-repositories

Pagination
Many REST APIs limit the number of results returned in a single response to manage
server load and improve performance. When working with large datasets, you’ll
need to make multiple requests to retrieve all results.

Common pagination approaches:

Offset-based - specify starting position and number of items (?
offset=20&limit=10)

Page-based - specify page number and page size (?page=2&per_page=30)

Cursor-based - use a token/cursor pointing to next set of results

Link header - server provides URLs to next/previous pages in response headers

The point is that there is no single standard for pagination in (REST) APIs, so always refer to the specific API
10Sta 523 - Fall 2025

GitHub API Pagination
GitHub uses page-based and link header pagination:

Query parameters:

per_page - number of items per page (default: 30, max: 100)

page - page number to retrieve (default: 1)

Link header: GitHub includes a Link header in responses with URLs for:

next - next page of results

prev - previous page

first - first page

last - last page

11Sta 523 - Fall 2025

12Sta 523 - Fall 2025

Background
httr2 is a package designed around the construction and handling of HTTP
requests and responses. It is a rewrite of the httr package and includes the
following features:

Pipeable API

Explicit request object, with support for

rate limiting

retries

OAuth

Secure secret storage

Explicit response object, with support for

error codes / reporting

common body encoding (e.g. json, etc.)

13Sta 523 - Fall 2025

Structure of an HTTP Request

14Sta 523 - Fall 2025

HTTP Methods / Verbs
GET - fetch a resource

POST - create a new resource

PUT - full update of a resource

PATCH - partial update of a resource

DELETE - delete a resource.

Less common verbs: HEAD, TRACE, OPTIONS.

15Sta 523 - Fall 2025

httr2 request objects
A new request object is constructed via request() which is then modified via req_*
() functions

Some useful functions:

request() - initialize a request object

req_method() - set HTTP method

req_url_query() - add query parameters to URL

req_url_*() - add or modify URL

req_body_*() - set body content (various formats and sources)

req_user_agent() - set user-agent

req_dry_run() - shows the exact request that will be made

16Sta 523 - Fall 2025

Structure of an HTTP Response

17Sta 523 - Fall 2025

Status Codes
1xx: Informational Messages

2xx: Successful

3xx: Redirection

4xx: Client Error

5xx: Server Error

18Sta 523 - Fall 2025

httr2 response objects
Once constructed a request is made via req_perform() which returns a response
object (the most recent response can also be retrieved via last_response()).
Content of the response are accessed via the resp_*() functions

Some useful functions:

resp_status() - extract HTTP status code

resp_status_desc() - return a text description of the status code

resp_content_type() - extract content type and encoding

resp_body_*() - extract body from a specific format (json, html, xml, etc.)

resp_headers() - extract response headers

19Sta 523 - Fall 2025

Demo 2 - httr2 + GitHub

20Sta 523 - Fall 2025

Authentication
Most APIs have rate limits and access restrictions:

Unauthenticated requestss - limited rate limits, restricted access

Authenticated requests - higher rate limits, access to private resources

GitHub API rate limits (per hour):

Unauthenticated: 60 requests

Authenticated: 5,000 requests (personal access token)

Authentication is done via HTTP headers, typically:

Authorization: Bearer <token>

Here Authorization is the request header and Bearer <token> is the value. With httr2 req_auth_bearer_token() can
21Sta 523 - Fall 2025

GitHub Personal Access Tokens (PATs)
A PAT is a secure alternative to using passwords for API authentication:

Generated on GitHub: Settings → Developer settings → Personal access tokens

Choose scopes (permissions) carefully - only grant what’s needed

Two types:

Fine-grained tokens - repository-specific access (recommended)

Classic tokens - broader access patterns

Best practices:

Never commit tokens to git repositories

Store in environment variables (e.g., .Renviron)

Use packages like gitcreds or credentials to manage tokens securely

Set expiration dates and rotate tokens regularly

22Sta 523 - Fall 2025

